Shifted GMRES for oscillatory integrals
نویسنده
چکیده
None of the existing methods for computing the oscillatory integral ∫ b a f(x)e iωg(x) dx achieve all of the following properties: high asymptotic order, stability, avoiding deformation into the complex plane and insensitivity to oscillations in f . We present a new method that satisfies these properties, based on applying the gmres algorithm to a shifted linear differential operator.
منابع مشابه
Preconditioned GMRES for oscillatory integrals
None of the existing methods for computing the oscillatory integral ∫ b a f(x)e iωg(x) dx achieve all of the following properties: high asymptotic order, stability, avoiding the computation of the path of steepest descent and insensitivity to oscillations in f . We present a new method that satisfies these properties, based on applying the gmres algorithm to a preconditioned differential operator.
متن کاملGMRES for the Differentiation Operator
We investigate using the gmres method with the differentiation operator. This operator is unbounded, and thus does not fall into the framework of existing Krylov subspace theory. We establish conditions under which a function can be approximated by its own derivatives in a domain of the complex plane. These conditions are used to determine when gmres converges. This algorithm outperforms tradit...
متن کاملTWO LOW-ORDER METHODS FOR THE NUMERICAL EVALUATION OF CAUCHY PRINCIPAL VSlLUE INTEGRALS OF OSCILLATORY KIND
In this paper, we develop two piecewise polynomial methods for the numerical evaluation of Cauchy Principal Value integrals of oscillatory kind. The two piecewisepolynomial quadratures are compact, easy to implement, and are numerically stable. Two numerical examples are presented to illustrate the two rules developed, The convergence of the two schemes is proved and some error bounds obtai...
متن کاملar X iv : 0 70 7 . 05 02 v 1 [ m at h - ph ] 3 J ul 2 00 7 DEFLATED GMRES FOR SYSTEMS WITH MULTIPLE SHIFTS AND MULTIPLE RIGHT - HAND SIDES
We consider solution of multiply shifted systems of nonsymmetric linear equations, possibly also with multiple right-hand sides. First, for a single right-hand side, the matrix is shifted by several multiples of the identity. Such problems arise in a number of applications, including lattice quantum chromodynamics where the matrices are complex and non-Hermitian. Some Krylov iterative methods s...
متن کاملDeflated Gmres for Systems with Multiple Shifts and Multiple Right-hand Sides∗
We consider solution of multiply shifted systems of nonsymmetric linear equations, possibly also with multiple right-hand sides. First, for a single right-hand side, the matrix is shifted by several multiples of the identity. Such problems arise in a number of applications, including lattice quantum chromodynamics where the matrices are complex and non-Hermitian. Some Krylov iterative methods s...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Numerische Mathematik
دوره 114 شماره
صفحات -
تاریخ انتشار 2010